skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hess, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The extent and distribution of tropical peatlands, and their importance as a vulnerable carbon (C) store, remain poorly quantified. Although large peatland complexes in Peru, the Congo basin, and Southeast Asia have been mapped in detail, information on many other tropical areas is uncertain. In the Eastern Colombian lowlands, peatland area estimates range from 700 km2 to nearly 60,000 km2, leading to highly uncertain C stocks. Using new field data, high‐resolution Earth observation (EO), and a random forest approach, we mapped peatlands across Colombian territory East of the Andes below 400 m elevation. We estimated peatland extent using two approaches: a conservative method focused on medium‐to‐high peat probability areas and a more inclusive one accounting for large low‐probability areas. Multiplying these extents by below‐ground carbon density yields a conservative estimate of 0.95 (0.6–1.39 Pg C, 95% confidence interval) over 9,391 km2(7,369–11,549 km2) and up to 2.86 Pg C (1.76–4.22 Pg C) across 29,069 km2 (22,429–36,238 km2). Among four potentially peat‐forming ecosystems identified, palm swamps and floodplain forests contributed most to the peat extent and C stock. We found that most peatland patches were relatively small, covering less than 100 ha. We compared our map to previously published global and pan‐tropical peat maps and found low spatial overlap among them, suggesting that peat maps uninformed by local field information may not precisely specify which landscape areas within a peatland‐rich region are actually peatlands. We further assessed the suitability of different EO and climate variables, highlighting the need for high‐resolution data to capture local heterogeneities in the landscape. 
    more » « less
    Free, publicly-accessible full text available April 15, 2026